Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Marko Scholze

Universitetslektor

Default user image.

Using SMOS soil moisture data combining CO2 flask samples to constrain carbon fluxes during 2010-2015 within a Carbon Cycle Data Assimilation System (CCDAS)

Författare

  • Mousong Wu
  • Marko Scholze
  • Thomas Kaminski
  • Michael Voßbeck
  • Torbern Tagesson

Summary, in English

The terrestrial carbon cycle is an important component of the global carbon budget due to its large gross exchange
fluxes with the atmosphere and their sensitivity to climate change. Terrestrial biosphere models show
large uncertainties in simulating carbon fluxes, which impact global carbon budget assessments. The land surface
carbon cycle is tightly controlled by soil moisture through plant physiological processes. Accurate soil
moisture observations thereby have the potential to improve the modeling of carbon fluxes in a model-data
fusion framework. We employ the Carbon Cycle Data Assimilation System (CCDAS) to assimilate six years of
surface soil moisture provided by the SMOS satellite in combination with global-scale observations of atmospheric
CO2 concentrations. We find that assimilation of SMOS soil moisture exhibits better performance on soil
hydrology modeling at both global and site-level than only assimilating atmospheric CO2 concentrations, and it
improves the soil moisture simulation particularly in mid- to high-latitude regions where the plants suffer from
water stress frequently. The optimized model also shows good agreements with inter-annual variability in simulated
Net Primary Productivity (NEP) and Gross Primary Productivity (GPP) from an atmospheric inversion
(Jena CarboScope) and the up-scaled eddy covariance flux product (FLUXNET-MTE), respectively. Correlation
between SIF (Solar Induced Fluorescence) and optimized GPP also shows to be the highest when soil moisture
and atmospheric CO2 are simultaneously assimilated. In general, CCDAS obtains smaller annual mean NEP
values (1.8 PgC/yr) than the atmospheric inversion and an ensemble of Dynamic Global Vegetation Models
(DGVMs), but larger GPP values (167.8 PgC/yr) than the up-scaled eddy covariance dataset (FLUXNET-MTE)
and the MODIS based GPP product for the years 2010 to 2015. This study demonstrates the high potential of
constraining simulations of the terrestrial biosphere carbon cycle on inter-annual time scales using long-term
microwave observations of soil moisture.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2020-04-01

Språk

Engelska

Publikation/Tidskrift/Serie

Remote Sensing of Environment

Volym

240

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0034-4257