Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Marko Scholze

Universitetslektor

Default user image.

The Community Inversion Framework v1.0 : A unified system for atmospheric inversion studies

Författare

  • Antoine Berchet
  • Espen Sollum
  • Rona L. Thompson
  • Isabelle Pison
  • Joël Thanwerdas
  • Grégoire Broquet
  • Frédéric Chevallier
  • Tuula Aalto
  • Adrien Berchet
  • Peter Bergamaschi
  • Dominik Brunner
  • Richard Engelen
  • Audrey Fortems-Cheiney
  • Christoph Gerbig
  • Christine D. Groot Zwaaftink
  • Jean Matthieu Haussaire
  • Stephan Henne
  • Sander Houweling
  • Ute Karstens
  • Werner L. Kutsch
  • Ingrid T. Luijkx
  • Guillaume Monteil
  • Paul I. Palmer
  • Jacob C.A. Van Peet
  • Wouter Peters
  • Philippe Peylin
  • Elise Potier
  • Christian Rödenbeck
  • Marielle Saunois
  • Marko Scholze
  • Aki Tsuruta
  • Yuanhong Zhao

Summary, in English

Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry-Transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2021-08

Språk

Engelska

Sidor

5331-5354

Publikation/Tidskrift/Serie

Geoscientific Model Development

Volym

14

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1991-959X