Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Margareta Johansson

Forskare

Default user image.

Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration

Författare

  • Sylvain Monteux
  • James T. Weedon
  • Gesche Blume-Werry
  • Konstantin Gavazov
  • Vincent E.J. Jassey
  • Margareta Johansson
  • Frida Keuper
  • Carolina Olid
  • Ellen Dorrepaal

Summary, in English

The decomposition of large stocks of soil organic carbon in thawing permafrost might depend on more than climate change-induced temperature increases: indirect effects of thawing via altered bacterial community structure (BCS) or rooting patterns are largely unexplored. We used a 10-year in situ permafrost thaw experiment and aerobic incubations to investigate alterations in BCS and potential respiration at different depths, and the extent to which they are related with each other and with root density. Active layer and permafrost BCS strongly differed, and the BCS in formerly frozen soils (below the natural thawfront) converged under induced deep thaw to strongly resemble the active layer BCS, possibly as a result of colonization by overlying microorganisms. Overall, respiration rates decreased with depth and soils showed lower potential respiration when subjected to deeper thaw, which we attributed to gradual labile carbon pool depletion. Despite deeper rooting under induced deep thaw, root density measurements did not improve soil chemistry-based models of potential respiration. However, BCS explained an additional unique portion of variation in respiration, particularly when accounting for differences in organic matter content. Our results suggest that by measuring bacterial community composition, we can improve both our understanding and the modeling of the permafrost carbon feedback.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth System
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2018-09

Språk

Engelska

Sidor

2129-2141

Publikation/Tidskrift/Serie

ISME Journal

Volym

12

Issue

9

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Geosciences, Multidisciplinary

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1751-7362