Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Marcin Jackowicz-Korczynski

Forskningsingenjör

Default user image.

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

Författare

  • Carolina Voigt
  • Maija E. Marushchak
  • Mikhail Mastepanov
  • Richard E. Lamprecht
  • Torben R. Christensen
  • Maxim Dorodnikov
  • Marcin Jackowicz-Korczyński
  • Amelie Lindgren
  • Annalea Lohila
  • Hannu Nykänen
  • Markku Oinonen
  • Timo Oksanen
  • Vesa Palonen
  • Claire C. Treat
  • Pertti J. Martikainen
  • Christina Biasi

Summary, in English


Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO
2
) and methane (CH
4
) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO
2
emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO
2
–C m
−2
day
−1
; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO
2
–C m
−2
day
−1
, mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (
14
C) of respired CO
2
, supported by an independent curve-fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post-thaw CO
2
flux. Elevated concentrations of CO
2
, CH
4
, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH
4
in the peat column, however, prevented CH
4
release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO
2
burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH
4
sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO
2
losses over longer timescales.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2019-01-25

Språk

Engelska

Sidor

1746-1764

Publikation/Tidskrift/Serie

Global Change Biology

Volym

25

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Climate Research

Nyckelord

  • climate warming
  • CO
  • greenhouse gas
  • mesocosm
  • methane oxidation
  • permafrost-carbon-feedback

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 1354-1013