Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Marcin Jackowicz-Korczynski


Default user image.

The uncertain climate footprint of wetlands under human pressure


  • Ana Maria Roxana Petrescu
  • Annalea Lohila
  • Juha-Pekka Tuovinen
  • Dennis D Baldocchi
  • Ankur R Desai
  • Nigel T Roulet
  • Timo Vesala
  • Albertus Johannes Dolman
  • Walter C Oechel
  • Barbara Marcolla
  • Thomas Friborg
  • Janne Rinne
  • Jaclyn Hatala Matthes
  • Lutz Merbold
  • Ana Meijide
  • Gerard Kiely
  • Matteo Sottocornola
  • Torsten Sachs
  • Donatella Zona
  • Andrej Varlagin
  • Derrick Y F Lai
  • Elmar Veenendaal
  • Frans-Jan Parmentier
  • Ute Skiba
  • Magnus Lund
  • Arjan Hensen
  • Jacobus van Huissteden
  • Lawrence B Flanagan
  • Narasinha J Shurpali
  • Thomas Grünwald
  • Elyn R Humphreys
  • Marcin Jackowicz-Korczynski
  • Mika A Aurela
  • Tuomas Laurila
  • Carsten Grüning
  • Chiara A R Corradi
  • Arina P Schrier-Uijl
  • Torben Christensen
  • Mikkel P Tamstorf
  • Mikhail Mastepanov
  • Pertti J Martikainen
  • Shashi B Verma
  • Christian Bernhofer
  • Alessandro Cescatti

Summary, in English

Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


  • Institutionen för naturgeografi och ekosystemvetenskap
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate








Proceedings of the National Academy of Sciences






Artikel i tidskrift


National Academy of Sciences


  • Physical Geography




  • ISSN: 1091-6490