Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Lena Ström

Professor

Default user image.

Methane Producing and Oxidizing Microorganisms Display a High Resilience to Drought in a Swedish Hemi-Boreal Mire

Författare

  • J. D. White
  • D. Ahrén
  • L. Ström
  • J. Kelly
  • L. Klemedtsson
  • B. Keane
  • F. J.W. Parmentier

Summary, in English

An increased frequency of droughts due to anthropogenic climate change can lead to considerable stress for soil microorganisms and their functioning within northern peatlands. A better understanding of the diversity and relative abundance of methane producing and oxidizing taxa, and their functional genes, can help predict the functional potential of peatlands and how the microorganisms respond to disturbances such as drought. To address knowledge gaps in the understanding of how functional genetic diversity shifts under drought conditions, we investigated a hemi boreal mire in Southern Sweden. Environmental parameters, including soil and air temperature, precipitation, and water table depth, as well as methane flux data were collected during the summer of 2017 under typical growing conditions, and in 2018 during a drought. In addition, the diversity and composition of genes encoding for methane metabolism were determined using the captured metagenomics technique. During drought we observed a substantial increase in air and soil temperature, reduced precipitation, and a lower water table depth. Taxonomic and functional gene composition significantly changed during the drought, while diversity indices, such as alpha and beta diversity, remained similar. These results indicate that methane producing and oxidizing microbial communities, and their functional genes, displayed a resilience to drought with specific genera having the ability to outcompete others under stress. Furthermore, our results show that although methane emissions are substantially reduced during drought, we can expect to see a shift toward more resilient methanogens and methanotrophs under future climate conditions.

Avdelning/ar

  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Institutionen för naturgeografi och ekosystemvetenskap
  • Bioinformatik
  • Molecular Cell Biology
  • MERGE: ModElling the Regional and Global Earth system
  • Centrum för miljö- och klimatvetenskap (CEC)

Publiceringsår

2023-09

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Geophysical Research: Biogeosciences

Volym

128

Issue

9

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley

Ämne

  • Physical Geography

Nyckelord

  • captured metagenomics
  • drought
  • metagenomics
  • methane
  • methanogen
  • methanotroph

Aktiv

Published

Forskningsgrupp

  • Bioinformatics

ISBN/ISSN/Övrigt

  • ISSN: 2169-8953