Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Lars Nieradzik

Forskare

Default user image.

Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models

Författare

  • Donatella D’Onofrio
  • Mara Baudena
  • Gitta Lasslop
  • Lars Peter Nieradzik
  • David Wårlind
  • Jost von Hardenberg

Summary, in English

Africa is largely influenced by fires, which play an important ecological role influencing the distribution and structure of grassland, savanna and forest biomes. Here vegetation strongly interacts with climate and other environmental factors, such as herbivory and humans. Fire-enabled Dynamic Global Vegetation Models (DGVMs) display high uncertainty in predicting the distribution of current tropical biomes and the associated transitions, mainly due to the way they represent the main ecological processes and feedbacks related to water and fire. The aim of this study is to evaluate the outcomes of two state-of-the–art DGVMs, LPJ-GUESS and JSBACH, also currently used in two Earth System Models (ESMs), in order to assess which key ecological processes need to be included or improved to represent realistic interactions between vegetation cover, precipitation and fires in sub-Saharan Africa. To this end, we compare models and remote-sensing data, analyzing the relationships between tree and grass cover, mean annual rainfall, average rainfall seasonality and average fire intervals, using generalized linear models, and we compare the patterns of grasslands, savannas, and forests in sub-Saharan Africa. Our analysis suggests that LPJ-GUESS (with a simple fire-model and complex vegetation description) performs well in regions of low precipitation, while in humid and mesic areas the representation of the fire process should probably be improved to obtain more open savannas. JSBACH (with a complex fire-model and a simple vegetation description) can simulate a vegetation-fire feedback that can maintain open savannas at intermediate and high precipitation, although this feedback seems to have stronger effects than observed, while at low precipitation JSBACH needs improvements in the representation of tree-grass competition and drought effects. This comparative process-based analysis permits to highlight the main factors that determine the tropical vegetation distribution in models and observations in sub-Saharan Africa, suggesting possible improvements in DGVMs and, consequently, in ESM simulations for future projections. Given the need to use carbon storage in vegetation as a climate mitigation measure, these models represent a valuable tool to improve our understanding of the sustainability of vegetation carbon pools as a carbon sink and the vulnerability to disturbances such as fire.

Avdelning/ar

  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system
  • Institutionen för naturgeografi och ekosystemvetenskap
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2020-08-14

Språk

Engelska

Publikation/Tidskrift/Serie

Frontiers in Environmental Science

Volym

8

Dokumenttyp

Artikel i tidskrift

Förlag

Frontiers Media S. A.

Ämne

  • Physical Geography

Nyckelord

  • dynamic global vegetation models
  • fire
  • precipitation
  • savanna
  • sub-Saharan Africa
  • tree and grass cover
  • tropical forest
  • tropical grassy biomes

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2296-665X