Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Jonas Ardö

Professor

Default user image.

Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach

Författare

  • M. Marshall
  • K. Tu
  • C. Funk
  • J. Michaelsen
  • P. Williams
  • C. Williams
  • Jonas Ardö
  • M. Boucher
  • B. Cappelaere
  • A. de Grandcourt
  • A. Nickless
  • Y. Nouvellon
  • R. Scholes
  • W. Kutsch

Summary, in English

Climate change is expected to have the greatest impact on the world's economically poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled evapotranspiration (ET), a key input in continental-scale hydrologic models. In this study, a remote sensing model of transpiration (the primary component of ET), driven by a time series of vegetation indices, was used to substitute transpiration from the Global Land Data Assimilation System realization of the National Centers for Environmental Prediction, Oregon State University, Air Force, and Hydrology Research Laboratory at National Weather Service Land Surface Model (GNOAH) to improve total ET model estimates for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against GNOAH ET and the remote sensing method using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance were at humid sites with dense vegetation, while performance at semi-arid sites was poor, but better than the models before hybridization. The reduction in errors using the hybrid model can be attributed to the integration of a simple canopy scheme that depends primarily on low bias surface climate reanalysis data and is driven primarily by a time series of vegetation indices.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • eSSENCE: The e-Science Collaboration
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2013

Språk

Engelska

Sidor

1079-1091

Publikation/Tidskrift/Serie

Hydrology and Earth System Sciences

Volym

17

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

European Geophysical Society

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1607-7938