Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa

Author:
  • Mats Lindeskog
  • A. Arneth
  • A. Bondeau
  • K. Waha
  • Jonathan Seaquist
  • Stefan Olin
  • Benjamin Smith
Publishing year: 2013
Language: English
Pages: 385-407
Publication/Series: Earth System Dynamics
Volume: 4
Issue: 2
Document type: Journal article
Publisher: Copernicus Gesellschaft mbH

Abstract english

Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, most models do not take full account of human land management and land use and land cover changes (LULCCs). We integrated croplands and pasture and their management and natural vegetation recovery and succession following cropland abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on net ecosystem carbon balance (NECB) and the skill of the model in describing agricultural production and reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991-1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2-6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971-2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land-atmosphere carbon fluxes for Africa associated with land use change (0.07 PgC yr(-1) release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be important to the land-atmosphere carbon flux for the 20th century.

Keywords

  • Physical Geography

Other

Published
  • ISSN: 2190-4979
E-mail: stefan [dot] olin [at] nateko [dot] lu [dot] se

Postdoctoral fellow

Dept of Physical Geography and Ecosystem Science

+46 46 222 38 30

366

16

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data

Accessibility statement