Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

Author:
  • A. Ekici
  • S. Chadburn
  • Nitin Chaudhary
  • L. H. Hajdu
  • A. Marmy
  • S. Peng
  • J. Boike
  • E. Burke
  • A. D. Friend
  • C. Hauck
  • G. Krinner
  • M. Langer
  • Paul Miller
  • C. Beer
Publishing year: 2015
Language: English
Pages: 1343-1361
Publication/Series: The Cryosphere
Volume: 9
Issue: 4
Document type: Journal article
Publisher: Copernicus Gesellschaft mbH

Abstract english

Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.

Keywords

  • Earth and Related Environmental Sciences

Other

Published
  • ISSN: 1994-0424
E-mail: paul [dot] miller [at] nateko [dot] lu [dot] se

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data