Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

The uncertain climate footprint of wetlands under human pressure

Author:
  • Ana Maria Roxana Petrescu
  • Annalea Lohila
  • Juha-Pekka Tuovinen
  • Dennis D Baldocchi
  • Ankur R Desai
  • Nigel T Roulet
  • Timo Vesala
  • Albertus Johannes Dolman
  • Walter C Oechel
  • Barbara Marcolla
  • Thomas Friborg
  • Janne Rinne
  • Jaclyn Hatala Matthes
  • Lutz Merbold
  • Ana Meijide
  • Gerard Kiely
  • Matteo Sottocornola
  • Torsten Sachs
  • Donatella Zona
  • Andrej Varlagin
  • Derrick Y F Lai
  • Elmar Veenendaal
  • Frans-Jan Parmentier
  • Ute Skiba
  • Magnus Lund
  • Arjan Hensen
  • Jacobus van Huissteden
  • Lawrence B Flanagan
  • Narasinha J Shurpali
  • Thomas Grünwald
  • Elyn R Humphreys
  • Marcin Jackowicz-Korczynski
  • Mika A Aurela
  • Tuomas Laurila
  • Carsten Grüning
  • Chiara A R Corradi
  • Arina P Schrier-Uijl
  • Torben Christensen
  • Mikkel P Tamstorf
  • Mikhail Mastepanov
  • Pertti J Martikainen
  • Shashi B Verma
  • Christian Bernhofer
  • Alessandro Cescatti
Publishing year: 2015
Language: English
Pages: 4594-4599
Publication/Series: Proceedings of the National Academy of Sciences
Volume: 112
Issue: 15
Document type: Journal article
Publisher: National Acad Sciences

Abstract english

Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.

Keywords

  • Physical Geography

Other

Published
  • ISSN: 1091-6490
E-mail: mikhail [dot] mastepanov [at] nateko [dot] lu [dot] se

Researcher

Dept of Physical Geography and Ecosystem Science

+46 46 222 39 75

+46 73 936 09 67

473

16

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data

Accessibility statement