Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

A New Process-Based Soil Methane Scheme : Evaluation Over Arctic Field Sites With the ISBA Land Surface Model

  • X. Morel
  • B. Decharme
  • C. Delire
  • G. Krinner
  • M. Lund
  • B. U. Hansen
  • M. Mastepanov
Publishing year: 2019
Language: English
Pages: 293-326
Publication/Series: Journal of Advances in Modeling Earth Systems
Volume: 11
Issue: 1
Document type: Journal article
Publisher: Wiley-Blackwell

Abstract english

Permafrost soils and arctic wetlands methane emissions represent an important challenge for modeling the future climate. Here we present a process-based model designed to correctly represent the main thermal, hydrological, and biogeochemical processes related to these emissions for general land surface modeling. We propose a new multilayer soil carbon and gas module within the Interaction Soil-Biosphere-Atmosphere (ISBA) land-surface model (LSM). This module represents carbon pools, vertical carbon dynamics, and both oxic and anoxic organic matter decomposition. It also represents the soil gas processes for CH4, CO2, and O2 through the soil column. We base CH4 production and oxydation on an O2 control instead of the classical water table level strata approach used in state-of-the-art soil CH4 models. We propose a new parametrization of CH4 oxydation using recent field experiments and use an explicit O2 limitation for soil carbon decomposition. Soil gas transport is computed explicitly, using a revisited formulation of plant-mediated transport, a new representation of gas bulk diffusivity in porous media closer to experimental observations, and an innovative advection term for ebullition. We evaluate this advanced model on three climatically distinct sites : two in Greenland (Nuuk and Zackenberg) and one in Siberia (Chokurdakh). The model realistically reproduces methane and carbon dioxide emissions from both permafrosted and nonpermafrosted sites. The evolution and vertical characteristics of the underground processes leading to these fluxes are consistent with current knowledge. Results also show that physics is the main driver of methane fluxes, and the main source of variability appears to be the water table depth.


  • Climate Research
  • Physical Geography
  • arctic ecosystem
  • carbon cycling
  • methane emission
  • modeling


  • ISSN: 1942-2466
E-mail: mikhail [dot] mastepanov [at] nateko [dot] lu [dot] se


Dept of Physical Geography and Ecosystem Science

+46 46 222 39 75

+46 73 936 09 67



Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund

Processing of personal data

Accessibility statement