The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Meelis Mölder

Research engineer

Default user image.

Boreal forest surface parameterization in the ECMWF model - 1D test with NOPEX long-term data

Author

  • D Gustafsson
  • E Lewan
  • BJJM van den Hurk
  • P Viterbo
  • A Grelle
  • Anders Lindroth
  • E Cienciala
  • Meelis Mölder
  • S Halldin
  • LC Lundin

Summary, in English

The objective of the present study was to assess the performance and recent improvements of the land surface scheme used operationally in the European Centre for Medium-Range Weather Forecasts (ECMWF) in a Scandinavian boreal forest climate/ecosystem. The previous (the 1999 scheme of P. Viterbo and A. K. Betts) and the new (Tiled ECMWF Surface Scheme for Exchange Processes over Land, TESSEL) surface schemes were validated by single-column runs against data from NOPEX (Northern Hemisphere Climate-Processes Land-Surface Experiment). Driving and validation datasets were prepared for a 3-yr period (1994-96). The new surface scheme, with separate surface energy balances for subgrid fractions (tiling), improved predictions of seasonal as well as diurnal variation in surface energy fluxes in comparison with the old scheme. Simulated wintertime evaporation improved significantly as a consequence of the introduced additional aerodynamic resistance for evaporation from snow lying under high vegetation. Simulated springtime evaporation also improved because the limitation of transpiration in frozen soils was now accounted for. However, downward sensible heat flux was still underestimated during winter, especially at nighttime, whereas soil temperatures were underestimated in winter and overestimated in summer. The new scheme also underestimated evaporation during dry periods in summer, whereas soil moisture was overestimated. Sensitivity tests showed that further improvements of simulated surface heat fluxes and soil temperatures could be obtained by calibration of parameters governing the coupling between the surface and the atmosphere and the ground heat flux, and parameters governing the water uptake by the vegetation. Model performance also improved when the seasonal variation in vegetation properties was included.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2003

Language

English

Pages

95-112

Publication/Series

Journal of Applied Meteorology

Volume

42

Issue

1

Document type

Journal article

Publisher

American Meteorological Society

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 0894-8763