The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Marko Scholze

Senior lecturer

Default user image.

Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system

Author

  • E. N. Koffi
  • P. J. Rayner
  • A. J. Norton
  • C. Frankenberg
  • Marko Scholze

Summary, in English

Simulations of carbon fluxes with terrestrial biosphere models still exhibit significant uncertainties, in part due to the uncertainty in model parameter values. With the advent of satellite measurements of solar induced chlorophyll fluorescence (SIF), there exists a novel pathway for constraining simulated carbon fluxes and parameter values. We investigate the utility of SIF in constraining gross primary productivity (GPP). As a first test we assess whether SIF simulations are sensitive to important parameters in a biosphere model. SIF measurements at the wavelength of 755 nm are simulated by the Carbon-Cycle Data Assimilation System (CCDAS) which has been augmented by the fluorescence component of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model. Idealized sensitivity tests of the SCOPE model stand-alone indicate strong sensitivity of GPP to the carboxylation capacity (V-cmax) and of SIF to the chlorophyll AB content (C-ab) and incoming short wave radiation. Low sensitivity is found for SIF to V-cmax, however the relationship is subtle, with increased sensitivity under high radiation conditions and lower V-cmax ranges. CCDAS simulates well the patterns of satellite-measured SIF suggesting the combined model is capable of ingesting the data. CCDAS supports the idealized sensitivity tests of SCOPE, with SIF exhibiting sensitivity to C-ab and incoming radiation, both of which are treated as perfectly known in previous CCDAS versions. These results demonstrate the need for careful consideration of C-ab and incoming radiation when interpreting SIF and the limitations of utilizing SIF to constrain V-cmax in the present set-up in the CCDAS system.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2015

Language

English

Pages

4067-4084

Publication/Series

Biogeosciences

Volume

12

Issue

13

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1726-4189