The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Marko Scholze

Senior lecturer

Default user image.

Investigating spatial differentiation of model parameters in a carbon cycle data assimilation system


  • T Ziehn
  • W Knorr
  • Marko Scholze

Summary, in English

Better estimates of the net exchange of CO(2) between the atmosphere and the terrestrial biosphere are urgently needed to improve predictions of future CO(2) levels in the atmosphere. The carbon cycle data assimilation system (CCDAS) offers the capability of inversion, while it is at the same time based on a process model that can be used independent of observational data. CCDAS allows the assimilation of atmospheric CO(2) concentrations into the terrestrial biosphere model BETHY, constraining its process parameters via an adjoint approach. Here, we investigate the effect of spatial differentiation of a universal carbon balance parameter of BETHY on posterior net CO(2) fluxes and their uncertainties. The parameter, beta, determines the characteristics of the slowly decomposing soil carbon pool and represents processes that are difficult to model explicitly. Two cases are studied with an assimilation period of 1979 to 2003. In the base case, there is a separate beta for each plant functional type (PFT). In the regionalization case, beta is differentiated not only by PFT, but also according to each of 11 large continental regions as used by the TransCom project. We find that the choice of spatial differentiation has a profound impact not only on the posterior (optimized) fluxes and their uncertainties, but even more so on the spatial covariance of the uncertainties. Differences are most pronounced in tropical regions, where observations are sparse. While regionalization leads to an improved fit to the observations by about 20% compared to the base case, we notice large spatial variations in the posterior net CO(2) flux on a grid cell level. The results illustrate the need for universal process formulations in global-scale atmospheric CO(2) inversion studies, at least as long as the observational network is too sparse to resolve spatial fluctuations at the regional scale.


  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year







Global Biogeochemical Cycles



Document type

Journal article


American Geophysical Union (AGU)


  • Physical Geography




  • ISSN: 0886-6236