The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

MJK

Marcin Jackowicz-Korczynski

Research engineer

MJK

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

Author

  • Carolina Voigt
  • Maija E. Marushchak
  • Mikhail Mastepanov
  • Richard E. Lamprecht
  • Torben R. Christensen
  • Maxim Dorodnikov
  • Marcin Jackowicz-Korczyński
  • Amelie Lindgren
  • Annalea Lohila
  • Hannu Nykänen
  • Markku Oinonen
  • Timo Oksanen
  • Vesa Palonen
  • Claire C. Treat
  • Pertti J. Martikainen
  • Christina Biasi

Summary, in English


Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO
2
) and methane (CH
4
) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO
2
emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO
2
–C m
−2
day
−1
; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO
2
–C m
−2
day
−1
, mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (
14
C) of respired CO
2
, supported by an independent curve-fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post-thaw CO
2
flux. Elevated concentrations of CO
2
, CH
4
, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH
4
in the peat column, however, prevented CH
4
release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO
2
burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH
4
sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO
2
losses over longer timescales.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2019-01-25

Language

English

Pages

1746-1764

Publication/Series

Global Change Biology

Volume

25

Issue

5

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Climate Research

Keywords

  • climate warming
  • CO
  • greenhouse gas
  • mesocosm
  • methane oxidation
  • permafrost-carbon-feedback

Status

Published

ISBN/ISSN/Other

  • ISSN: 1354-1013