The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

MJK

Marcin Jackowicz-Korczynski

Research engineer

MJK

Annual carbon gas budget for a subarctic peatland, Northern Sweden

Author

  • K. Backstrand
  • P. M. Crill
  • Marcin Jackowicz-Korczynski
  • Mikhail Mastepanov
  • T. R. Christensen
  • D. Bastviken

Summary, in English

Temperatures in the Arctic regions are rising, thawing permafrost and exposing previously stable soil organic carbon (OC) to decomposition. This can result in northern latitude soils, which have accumulated large amounts of OC potentially shifting from atmospheric C sinks to C sources with positive feedback on climate warming. In this paper, we estimate the annual net C gas balance (NCB) of the subarctic mire Stordalen, based on automatic chamber measurements of CO2 and total hydrocarbon (THC; CH4 and NMVOCs) exchange. We studied the dominant vegetation communities with different moisture and permafrost characteristics; a dry Palsa underlain by permafrost, an intermediate thaw site with Sphagnum spp. and a wet site with Eriophorum spp. where the soil thaws completely. Whole year accumulated fluxes of CO2 were estimated to 29.7, -35.3 and -34.9 gC m(-2) respectively for the Palsa, Sphagnum and Eriophorum sites (positive flux indicates an addition of C to the atmospheric pool). The corresponding annual THC emissions were 0.5, 6.2 and 31.8 gC m(-2) for the same sites. Therefore, the NCB for each of the sites was 30.2, -29.1 and -3.1 gC m(-2) respectively for the Palsa, Sphagnum and Eriophorum site. On average, the whole mire was a CO2 sink of 2.6 gC m(-2) and a THC source of 6.4 gC m(-2) over a year. Consequently, the mire was a net source of C to the atmosphere by 3.9 gC m(-2) (based on area weighted estimates for each of the three plant communities). Early and late snow season efflux of CO2 and THC emphasize the importance of winter measurements for complete annual C budgets. Decadal vegetation changes at Stordalen indicate that both the productivity and the THC emissions increased between 1970 and 2000. Considering the GWP(100) of CH4, the net radiative forcing on climate increased 21% over the same time. In conclusion, reduced C compounds in these environments have high importance for both the annual C balance and climate.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2010

Language

English

Pages

95-108

Publication/Series

Biogeosciences

Volume

7

Issue

1

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1726-4189