Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Large tundra methane burst during onset of freezing.

Author:
  • Mikhail Mastepanov
  • Charlotte Sigsgaard
  • Edward J Dlugokencky
  • Sander Houweling
  • Lena Ström
  • Mikkel P Tamstorf
  • Torben Christensen
Publishing year: 2008
Language: English
Pages: 58-628
Publication/Series: Nature
Volume: 456
Issue: 7222
Document type: Journal article (letter)
Publisher: Nature Publishing Group

Abstract english

Terrestrial wetland emissions are the largest single source of the greenhouse gas methane. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain. As a result, not all the observed spatial and seasonal patterns of atmospheric methane concentrations can be satisfactorily explained, particularly for high northern latitudes. For example, a late-autumn shoulder is consistently observed in the seasonal cycles of atmospheric methane at high-latitude sites, but the sources responsible for these increased methane concentrations remain uncertain. Here we report a data set that extends hourly methane flux measurements from a high Arctic setting into the late autumn and early winter, during the onset of soil freezing. We find that emissions fall to a low steady level after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60 degrees N. Our findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emissions from high latitudes.

Keywords

  • Physical Geography

Other

Published
  • ISSN: 0028-0836
E-mail: lena [dot] strom [at] nateko [dot] lu [dot] se

Professor

Dept of Physical Geography and Ecosystem Science

+46 46 222 37 46

356

16

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data

Accessibility statement