Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots

  • Lena Ström
  • AG Owen
  • DL Godbold
  • DL Jones
Publishing year: 2002
Language: English
Pages: 703-710
Publication/Series: Soil Biology & Biochemistry
Volume: 34
Issue: 5
Document type: Journal article
Publisher: Elsevier
Additional info: The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Plant Ecology and Systematics (Closed 2011) (011004000), Dept of Physical Geography and Ecosystem Science (011010000)

Abstract english

The exudation of organic acids into the rhizosphere by plant roots has been hypothesized to be one potential mechanism by which plants can enhance the mobilization of poorly soluble nutrients in the soil. The experiments undertaken in this study were aimed at determining whether the organic acids, citrate and oxalate, could enhance the uptake of P-33 from a calcareous soil with a high P fixation capacity (Typic rendoll). Soil-filled rhizosphere microcosms were constructed which allowed the growth of a single maize root axis through a (KH2PO4-)-P-33 labelled patch of soil. After passage of the root through the P-33-labelled soil, organic acids or distilled water (control) were added to the patch at concentrations of 1 and 10 mM over a subsequent 4-day period. While oxalate resulted in an approximately two-fold enhancement in shoot P-33 accumulation, citrate did not result in a significant enhancement of P-33 uptake above controls to which only distilled water were added. No synergistic effect on shoot P-33 accumulation was observed when both oxalate and citrate were added to the soil simultaneously. We hypothesize that the observed differences in shoot P-33 accumulation by the two organic acids were due primarily to the differences in their biodegradation rate and P mobilization reactions. This study demonstrates that in vivo, organic acids can cause a significant enhancement of plant P uptake, however, the magnitude of the P mobilization response is likely to be highly context dependent. (C) 2002 Published by Elsevier Science Ltd.


  • Ecology
  • maize
  • rhizosphere
  • oxalate
  • citrate
  • phosphorus
  • organic acids
  • nutrient mobilization


  • ISSN: 0038-0717
E-mail: lena [dot] strom [at] nateko [dot] lu [dot] se


Dept of Physical Geography and Ecosystem Science

+46 46 222 37 46



Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund

Processing of personal data

Accessibility statement