The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Lars Eklundh

Professor

Default user image.

Timesat for processing time-series data from satellite sensors for land surface monitoring

Author

  • Lars Eklundh
  • Per Jönsson

Editor

  • Yifang Ban

Summary, in English

The TIMESAT software package has been developed to enable monitoring of dynamic land surface processes using remotely sensed data. The monitoring capability is based on processing of time-series for each image pixel using either of three smoothing methods included in TIMESAT: asymmetric Gaussian fits, doublelogistic fits, and Savitzky-Golay filtering. The methods have different properties and are suitable for a wide range of data with different character and noise properties. The fitting methods can be upper-envelope weighted and can take quality data into account. Based on the fitted functions, growing season parameters are then extracted (beginning, end, amplitude, slope, integral, etc.), and can be merged into images. TIMESAT has been used in a number of application fields: mapping of phenology and phenological variations; ecological disturbances; vegetation classification and characterization; agriculture applications; climate applications; and for improving remote sensing signal quality. Future developments of TIMESAT will include new methods to better handle long gaps in time-series, handling of irregular time sampling, improved smoothing methods, and incorporation of the spatial domain. These modifications will enable use of TIMESAT also for high-resolution data, e.g. data from the planned ESA Sentinel-2 satellite.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2016

Language

English

Pages

177-194

Publication/Series

Remote Sensing and Digital Image Processing

Volume

20

Document type

Book chapter

Publisher

Springer International Publishing

Topic

  • Remote Sensing

Status

Published

ISBN/ISSN/Other

  • ISSN: 22151842
  • ISSN: 15673200
  • ISBN: 9783319470351
  • ISBN: 9783319470375