Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index

  • Hongxiao Jin
  • Anna Maria Jönsson
  • Kjell Bolmgren
  • Ola Langvall
  • Lars Eklundh
Publishing year: 2017-06-14
Language: English
Pages: 203-212
Publication/Series: Remote Sensing of Environment
Volume: 198
Document type: Journal article
Publisher: Elsevier

Abstract english

Land surface phenology is frequently derived from remotely sensed data. However, over regions with seasonal snow cover, remotely-sensed land surface phenology may be dominated by snow seasonality, rather than showing true plant phenology. Overlooking snow influences may lead to inaccurate plant phenology estimation, and consequently to misinterpretation of climate-vegetation interactions. To address the problem we apply the recently developed plant phenology index (PPI) to Moderate Resolution Imaging Spectroradiometer (MODIS) data for estimating plant phenology metrics over northern Europe. We compare PPI-derived start and end of the growing season with ground observations by professionals (6 sites) and nonprofessional citizens (378 sites), with phenology metrics derived from gross primary productivity (GPP, 18 sites), and with data on the timing of snow cover. These data are also compared with land surface phenology metrics derived from the normalized difference vegetation index (NDVI) using the same MODIS data. We find that the PPI-retrieved plant phenology agrees with ground observations and GPP-derived phenology, and that the NDVI-derived phenology to a large extent agrees with the end-of-snowmelt for the start-of-season and the start-of-snowing for the end-of-season. PPI is thereby useful for more accurate estimation of plant phenology from remotely sensed data over northern Europe and other regions with seasonal snow cover.


  • Physical Geography
  • Botany
  • MODIS; NDVI; Plant phenology index (PPI); Land surface phenology; Snow seasonality


  • ISSN: 0034-4257
E-mail: lars [dot] eklundh [at] nateko [dot] lu [dot] se


Dept of Physical Geography and Ecosystem Science

+46 46 222 96 55



Teaching staff

Dept of Physical Geography and Ecosystem Science


Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund

Processing of personal data

Accessibility statement