Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Future supply and demand of net primary production in the Sahel

Author:
  • Florian Sallaba
  • Stefan Olin
  • Kerstin Engström
  • Abdulhakim M. Abdi
  • Niklas Boke-Olén
  • Veiko Lehsten
  • Jonas Ardö
  • Jonathan W. Seaquist
Publishing year: 2017-12-19
Language: English
Pages: 1191-1221
Publication/Series: Earth System Dynamics
Volume: 8
Issue: 4
Document type: Journal article
Publisher: Copernicus Gesellschaft mbH

Abstract english

In the 21st century, climate change in combination with increasing demand, mainly from population growth, will exert greater pressure on the ecosystems of the Sahel to supply food and feed resources. The balance between supply and demand, defined as the annual biomass required for human consumption, serves as a key metric for quantifying basic resource shortfalls over broad regions.

Here we apply an exploratory modelling framework to analyse the variations in the timing and geography of different NPP (net primary production) supply-demand scenarios, with distinct assumptions determining supply and demand, for the 21st century Sahel. We achieve this by coupling a simple NPP supply model forced with projections from four representative concentration pathways with a global, reduced-complexity demand model driven by socio-economic data and assumptions derived from five shared socio-economic pathways.

For the scenario that deviates least from current socio-economic and climate trends, we find that per capita NPP begins to outstrip supply in the 2040s, while by 2050 half the countries in the Sahel experience NPP shortfalls. We also find that despite variations in the timing of the onset of NPP shortfalls, demand cannot consistently be met across the majority of scenarios. Moreover, large between-country variations are shown across the scenarios, in which by the year 2050 some countries consistently experience shortage or surplus, while others shift from surplus to shortage. At the local level (i.e. grid cell), hotspots of total NPP shortfall consistently occur in the same locations across all scenarios but vary in size and magnitude. These hotspots are linked to population density and high demand. For all scenarios, total simulated NPP supply doubles by 2050 but is outpaced by increasing demand due to a combination of population growth and the adoption of diets rich in animal products. Finally, variations in the timing of the onset and end of supply shortfalls stem from the assumptions that underpin the shared socio-economic pathways rather than the representative concentration pathways.

Our results suggest that the UN sustainable development goals for eradicating hunger are at high risk for failure. This emphasizes the importance of policy interventions such as the implementation of sustainable and healthy diets, family planning, reducing yield gaps, and encouraging the transfer of resources to impoverished areas via trade relations.

Keywords

  • Economic Geography

Other

Published
  • ISSN: 2190-4979
E-mail: jonathan [dot] seaquist [at] nateko [dot] lu [dot] se

Head of department

Dept of Physical Geography and Ecosystem Science

+46 46 222 39 74

348

16

Senior lecturer

Dept of Physical Geography and Ecosystem Science

+46 46 222 39 74

348

16

Teaching staff

Dept of Physical Geography and Ecosystem Science

348

16

Department of Physical Geography and Ecosystem Science
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

Processing of personal data