The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Chiara Molinari

Chiara Molinari

Postdoctoral fellow

Chiara Molinari

Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis

Author

  • Chiara Molinari
  • Veiko Lehsten
  • Richard H. W. Bradshaw
  • Mitchell J. Power
  • Peter Harmand
  • Almut Arneth
  • Jed O. Kaplan
  • Boris Vanniere
  • Martin Sykes

Summary, in English

AimTo reconstruct spatial and temporal patterns of European fire activity during the Holocene and to explore their potential drivers, by relating biomass burning to simulated biotic and abiotic parameters. LocationEurope. MethodsHolocene fire activity was investigated based on 156 sedimentary charcoal records from lakes and peat bogs across Europe. Charcoal data covering the last 9000 years were statistically compared with palaeoclimate data derived from the Max Planck Institute for Meteorology/University of Wisconsin-Madison Earth System Model, with vegetation and fire indices simulated with the dynamic vegetation model lpj-guess and with two independent scenarios of past anthropogenic land-cover change. ResultsThe combined sedimentary charcoal records suggest that there was little fire activity during the early and the middle Holocene compared with recent millennia. A progressive increase in fire frequency began around 3500cal. yr bp and continues into the late Holocene. Biomass burning rose sharply from 250cal. yr bp onwards, reaching a maximum during the early Industrial Era and then declining abruptly. When considering the whole Holocene, the long-term control of fire is best explained by anthropogenic land-cover change, litter availability and temperature-related parameters. Main conclusionsWhile the general patterns found across Europe suggest the primary role of vegetation, precipitation and temperature-related parameters in explaining fire dynamics during the early Holocene, the increase in fire activity observed in the mid-late Holocene is mainly related to anthropogenic land-cover changes, followed by vegetation and temperature-related parameters. The 20th-century decline in biomass burning seems to be due to increased landscape fragmentation and active fire suppression policies. Our hypothesis that human activities played a primary role in Holocene biomass burning across Europe could be tested by improved palaeoclimate reconstructions and more refined representations of anthropogenic fires in climate and vegetation models.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2013

Language

English

Pages

1248-1260

Publication/Series

Global Ecology and Biogeography

Volume

22

Issue

12

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Physical Geography

Keywords

  • Charcoal series
  • fire activity
  • Holocene
  • HYDE 3
  • 1
  • KK10
  • lpj-guess
  • palaeoclimate dynamics
  • principal components analysis
  • principal
  • components regression

Status

Published

ISBN/ISSN/Other

  • ISSN: 1466-8238