The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Chiara Molinari

Chiara Molinari

Postdoctoral fellow

Chiara Molinari

The climate, the fuel and the land use: long-term regional variability of biomass burning in boreal forests

Author

  • Chiara Molinari
  • Veiko Lehsten
  • Olivier Blarquez
  • Christopher Carcaillet
  • Basil A.S. Davis
  • Jed O. Kaplan
  • Jennifer Clear
  • Richard Bradshaw

Summary, in English

The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (a) pollen‐based mean July/summer temperature and mean annual precipitation reconstructions, (b) an independent model‐based scenario of past land use (LU), and (c) pollen‐based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (a) a west‐east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (b) a north‐south European boreal sector characterized by gradual variation in both climate and vegetation composition. The processes driving BB in boreal forests varied from one region to another during the Holocene. However, general trends in boreal biomass burning were primarily controlled by changes in climate (mean annual precipitation in Alaska, northern Quebec, and northern Fennoscandia, and mean July/summer temperature in central Canada and central Fennoscandia) and, secondarily, by fuel composition (BB positively correlated with the presence of boreal needleleaf evergreen
trees in Alaska and in central and southern Fennoscandia). Land use played
only a marginal role. A modification towards less flammable tree species (by promoting deciduous stands over fire‐prone conifers) could contribute to reduce circumboreal wildfire risk in future warmer periods.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • LUCCI - Lund Centre for Studies of Carbon Cycle and Climate Interaction

Publishing year

2018-01

Language

English

Pages

4929-4945

Publication/Series

Global Change Biology

Volume

24

Issue

10

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Climate Research

Keywords

  • biomass burning
  • boreal biome
  • climate variations
  • Holocene
  • land use
  • plant functional types

Status

Published

ISBN/ISSN/Other

  • ISSN: 1365-2486