Babak Mohammadi
Doctoral student
Soil moisture estimation using novel bio-inspired soft computing approaches
Author
Summary, in English
Soil moisture (SM) is of paramount importance in irrigation scheduling, infiltration, runoff, and agricultural drought monitoring. This work aimed at evaluating the performance of the classical ANFIS (Adaptive Neuro-Fuzzy Inference System) model as well as ANFIS coupled with three bio-inspired metaheuristic optimization methods including whale optimization algorithm (ANFIS-WOA), krill herd algorithm (ANFIS-KHA) and firefly algorithm (ANFIS-FA) in estimating SM. Daily air temperature, relative humidity, wind speed and sunshine hours data at Istanbul Bolge station in Turkey and soil temperature values measured over 2008–2009 were fed into the models under six different scenarios. ANFIS-WOA (RMSE = 1.68, MAPE = 0.04) and ANFIS (RMSE = 2.55, MAPE = 0.07) exhibited the best and worst performance in SM estimation, respectively. All three hybrid models (ANFIS-WOA, ANFIS-KHA and ANFIS-FA) improved SM estimates, reducing RMSE by 34, 28 and 27% relative to the base ANFIS model, respectively. A more detailed analysis of model performances in estimating moisture content over three intervals including [15–25), [25–35) and ≥35% revealed that ANFIS-WOA has had the lowest errors with RMSEs of 1.69, 1.89 and 1.55 in the three SM intervals, respectively. From the perspective of under- or over-estimation of moisture values, ANFIS-WOA (RMSE = 1.44, MAPE = 0.03) in under-estimation set and ANFIS-KHA (RMSE = 1.94, MAPE = 0.05) in over-estimation set showed the highest accuracies. Overall, all three hybrid models performed better in the underestimation set compared to overestimation set.
Department/s
- Dept of Physical Geography and Ecosystem Science
Publishing year
2022
Language
English
Pages
826-840
Publication/Series
Engineering Applications of Computational Fluid Mechanics
Volume
16
Issue
1
Document type
Journal article
Publisher
Hong Kong Polytechnic University
Topic
- Water Engineering
- Physical Geography
Keywords
- Hydrological modeling
- Artificial intelligence
- data-driven models
- meteorological variables
- soil moisture
- Water resources management
Status
Published
ISBN/ISSN/Other
- ISSN: 1994-2060