The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Babak Mohammadi

Doctoral student

Default user image.

New hybrid nature-based algorithm to integration support vector machine for prediction of soil cation exchange capacity

Author

  • Samad Emamgholizadeh
  • Babak Mohammadi

Summary, in English

Soil cation exchange capacity (CEC) strongly influences the chemical, physical, and biological properties of soil. As the direct measurement of the CEC is difficult, costly, and time-consuming, the indirect estimation of CEC from chemical and physical parameters has been considered as an alternative method by researchers. Accordingly, in this study, a new hybrid model using a support vector machine (SVM), coupling with particle swarm optimization (PSO), and integrated invasive weed optimization (IWO) algorithm is developed for estimating the soil CEC. The physical and chemical data (i.e., clay, organic matter (OM), and pH) from two field sites of Taybad and Semnan in Iran were used for validating the new proposed approach. The ability of the proposed model (SVM-PSOIWO) was compared with the individual model (SVM) and the hybrid model (SVM-PSO). The results of the SVM-PSOIWO model were also compared with those of existing studies. Different performance evaluation criteria such as RMSE, R2, MAE, RRMSE, and MAPE, Box plots, and scatter diagrams were used to test the ability of the proposed models for estimation of the CEC values. The results showed that the SVM-PSOIWO model with the RMSE (R2) of 0.229 Cmol + kg−1 (0.924) was better than those of the SVM and SVM-PSO models with the RMSE (R2) of 0.335 Cmol + kg−1 (0.843) and 0.279 Cmol + kg−1 (0.888), respectively. Furthermore, the ability of the SVM-PSOIWO model compared with existing studies, which used the genetic expression programming, artificial neural network, and multivariate adaptive regression splines models. The results indicated that the SVM-PSOIWO model estimates the CEC more accurately than existing studies.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2021-08-06

Language

English

Pages

13451-13464

Publication/Series

Soft Computing

Volume

25

Issue

21

Document type

Journal article

Publisher

Springer

Topic

  • Other Environmental Engineering

Keywords

  • Invasive weed optimization algorithm
  • Particle swarm optimization
  • Soil cation exchange capacity
  • Soil physics
  • Support vector machine

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-7643