The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Anneli Poska

Postdoctoral fellow

Default user image.

Taxon-specific pollen deposition dynamics in a temperate forest zone, SE Poland: the impact of physiological rhythmicity and weather controls

Author

  • Irena Agnieszka Pidek
  • Anneli Poska
  • Boguslaw Michal Kaszewski

Summary, in English

High and low pollen deposition years in the period 1998-2010 were recorded for ten forest-forming trees in Roztocze (SE Poland) using Tauber-style traps. The coincidence of very high/low pollen deposition years recorded in Tauber traps and aerobiological data obtained by volumetric samplers shows that these phenomena occur simultaneously in different places across vast areas of a tree's distribution range. The natural physiological rhythms displayed in abundance of flowering were considered on the basis of the observed data and published sources. The results obtained from applying Spearman's correlation to pollen accumulation rates from Roztocze and the meteorological parameters confirmed several statistically significant correlations between temperature and summer precipitation prior to pollen emission and a negative correlation with the winter temperature before pollen emission. Air temperature, precipitation, growing season duration (its start and end), winter length and the number of winter days with a daily mean temperature below 0 A degrees C were all considered. The best correlation coefficient results were obtained for the trees most abundant in the vegetation, namely Abies alba, Fagus sylvatica and Pinus sylvestris. Earlier findings on the controlling role of temperature and precipitation during the summer prior to pollen emission were confirmed, and a long period of winter dormancy was stressed as a factor favouring high pollen production. The examples from Roztocze reflected situations when a strong weather signal overrode the natural flowering rhythm. This was observable in the case of P. sylvestris, where pollen production reflected the air temperature of the previous summer or in the case of a mast year, which occurred across the whole distribution range of F. sylvatica in 2006.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2015

Language

English

Pages

219-238

Publication/Series

Aerobiologia

Volume

31

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Botany
  • Respiratory Medicine and Allergy

Keywords

  • Pollen monitoring
  • Temperate forests
  • Pollen deposition
  • Pollen-climate
  • correlations

Status

Published

ISBN/ISSN/Other

  • ISSN: 0393-5965