Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Anna Maria Jönsson

Professor

Default user image.

Climate effects on the onset of flowering in the United Kingdom

Author

  • Nigel Fox
  • Anna Maria Jönsson

Summary, in English

Background: A warmer climate has consequences for the timing of phenological events, as temperature is a key factor controlling plant development and flowering. In this study, we analyse the effects of the long-term climate change and an extreme weather event on the first flowering day (FFD) of five spring-flowering wild plant species in the United Kingdom. Citizen science data from the UK Woodland Trust were obtained for five species: Tussilago farfara (coltsfoot), Anemone nemorosa (wood anemone), Hyacinthoides non-scripta (bluebell), Cardamine pratensis (cuckooflower) and Alliaria petiolate (garlic mustard). Results: Out of the 351 site-specific time series (≥ 15-years of FFD records), 74.6% showed significant negative response rates, i.e. earlier flowering in warmer years, ranging from − 5.6 to − 7.7 days °C−1. 23.7% of the series had non-significant negative response rates, and 1.7% had non-significant positive response rates. For cuckooflower, the response rate was increasingly more negative with decreasing latitudes. The winter of 2007 reflects an extreme weather event, about 2 °C warmer compared to 2006, where the 2006 winter temperatures were similar to the 1961–1990 baseline average. The FFD of each species was compared between 2006 and 2007. The results showed that the mean FFD of all species significantly advanced between 13 and 18 days during the extreme warmer winter of 2007, confirming that FFD is affected by temperature. Conclusion: Given that all species in the study significantly respond to ambient near-surface temperatures, they are suitable as climate-change indicators. However, the responses to a + 2 °C warmer winter were both more and less pronounced than expected from an analysis of ≥ 15-year time series. This may reflect non-linear responses, species-specific thresholds and cumulative temperature effects. It also indicates that knowledge on extreme weather events is needed for detailed projections of potential climate change effects.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC - Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2019

Language

English

Publication/Series

Environmental Sciences Europe

Volume

31

Issue

1

Document type

Journal article

Publisher

Springer Open

Topic

  • Ecology

Keywords

  • Bluebell
  • Citizen science
  • Climate change
  • Coltsfoot
  • Cuckooflower
  • Garlic mustard
  • Plant phenology
  • Wood anemone

Status

Published

ISBN/ISSN/Other

  • ISSN: 2190-4707