The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Anders Lindroth

Professor

Default user image.

Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

Author

  • Samuli Launiainen
  • Gabriel G. Katul
  • Pasi Kolari
  • Anders Lindroth
  • Annalea Lohila
  • Mika Aurela
  • Andrej Varlagin
  • Achim Grelle
  • Timo Vesala

Summary, in English

Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water- and light-use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m−2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m−2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m−2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m−2). This finding emphasizes the significance of stand-replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2016-12-01

Language

English

Pages

4096-4113

Publication/Series

Global Change Biology

Volume

22

Issue

12

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Climate Research
  • Ecology

Keywords

  • boreal forest
  • ecosystem modeling
  • eddy-covariance
  • energy budget
  • evapotranspiration
  • latent and sensible heat flux
  • leaf area index
  • light-use efficiency
  • remote sensing
  • water-use efficiency

Status

Published

ISBN/ISSN/Other

  • ISSN: 1354-1013