The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Anders Lindroth

Professor

Default user image.

Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes

Author

  • Mats Nilsson
  • Joergen Sagerfors
  • Ishi Buffam
  • Hjalmar Laudon
  • Tobias Eriksson
  • Achim Grelle
  • Leif Klemedtsson
  • Per Weslien
  • Anders Lindroth

Summary, in English

Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 (+/- SD) g C m(-2) yr(-1) during 2004 and 20 +/- 3.4 g C m(-2) yr(-1) during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m(-2) yr(-1) during 2004 and 48 +/- 1.6 g C m(-2) yr(-1) during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m(-2) yr(-1) during 2004 and 86 g C m(-2) yr(-1) during 2005, and a net loss season with a loss of 37 g C m(-2) yr(-1) during 2004 and 38 g C m(-2) yr(-1) during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC >> CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2008

Language

English

Pages

2317-2332

Publication/Series

Global Change Biology

Volume

14

Issue

10

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Physical Geography

Keywords

  • peat
  • NEE
  • NECB
  • methane
  • Eddy covariance
  • DOC
  • boreal mire
  • carbon balance
  • runoff
  • Sphagnum
  • TOC

Status

Published

ISBN/ISSN/Other

  • ISSN: 1354-1013