The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Ahlström

Anders Ahlström

Senior lecturer

Anders Ahlström

Toward more realistic projections of soil carbon dynamics by Earth system models

Author

  • Yiqi Luo
  • Anders Ahlström
  • Steven D. Allison
  • Niels H. Batjes
  • Victor Brovkin
  • Nuno Carvalhais
  • Adrian Chappell
  • Philippe Ciais
  • Eric A. Davidson
  • Adien Finzi
  • Katerina Georgiou
  • Bertrand Guenet
  • Oleksandra Hararuk
  • Jennifer W. Harden
  • Yujie He
  • Francesca Hopkins
  • Lifen Jiang
  • Charlie Koven
  • Robert B. Jackson
  • Chris D. Jones
  • Mark J. Lara
  • Junyi Liang
  • A. David McGuire
  • William Parton
  • Changhui Peng
  • James T. Randerson
  • Alejandro Salazar
  • Carlos A. Sierra
  • Matthew J. Smith
  • Hanqin Tian
  • Katherine E.O. Todd-Brown
  • Margaret Torn
  • Kees Jan Van Groenigen
  • Ying Ping Wang
  • Tristram O. West
  • Yaxing Wei
  • William R. Wieder
  • Jianyang Xia
  • Xia Xu
  • Xiaofeng Xu
  • Tao Zhou

Summary, in English

Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2016-01-01

Language

English

Pages

40-56

Publication/Series

Global Biogeochemical Cycles

Volume

30

Issue

1

Document type

Journal article

Publisher

American Geophysical Union (AGU)

Keywords

  • CMIP5
  • Earth system models
  • realistic projections
  • recommendations
  • soil carbon dynamics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0886-6236