The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Ahlström

Anders Ahlström

Senior lecturer

Anders Ahlström

Approaching the potential of model-data comparisons of global land carbon storage

Author

  • Zhendong Wu
  • Gustaf Hugelius
  • Yiqi Luo
  • Benjamin Smith
  • Jianyang Xia
  • Rasmus Fensholt
  • Veiko Lehsten
  • Anders Ahlström

Summary, in English

Carbon storage dynamics in vegetation and soil are determined by the balance of carbon influx and turnover. Estimates of these opposing fluxes differ markedly among different empirical datasets and models leading to uncertainty and divergent trends. To trace the origin of such discrepancies through time and across major biomes and climatic regions, we used a model-data fusion framework. The framework emulates carbon cycling and its component processes in a global dynamic ecosystem model, LPJ-GUESS, and preserves the model-simulated pools and fluxes in space and time. Thus, it allows us to replace simulated carbon influx and turnover with estimates derived from empirical data, bringing together the strength of the model in representing processes, with the richness of observational data informing the estimations. The resulting vegetation and soil carbon storage and global land carbon fluxes were compared to independent empirical datasets. Results show model-data agreement comparable to, or even better than, the agreement between independent empirical datasets. This suggests that only marginal improvement in land carbon cycle simulations can be gained from comparisons of models with current-generation datasets on vegetation and soil carbon. Consequently, we recommend that model skill should be assessed relative to reference data uncertainty in future model evaluation studies.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • eSSENCE: The e-Science Collaboration
  • MERGE: ModElling the Regional and Global Earth system
  • Centre for Advanced Middle Eastern Studies (CMES)
  • MECW: The Middle East in the Contemporary World

Publishing year

2019-03-04

Language

English

Publication/Series

Scientific Reports

Volume

9

Issue

1

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Climate Research

Status

Published

ISBN/ISSN/Other

  • ISSN: 2045-2322