The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Ahlström

Anders Ahlström

Senior lecturer

Anders Ahlström

Transient dynamics of terrestrial carbon storage : Mathematical foundation and its applications

Author

  • Yiqi Luo
  • Zheng Shi
  • Xingjie Lu
  • Jianyang Xia
  • Junyi Liang
  • Jiang Jiang
  • Ying Wang
  • Matthew J. Smith
  • Lifen Jiang
  • Anders Ahlström
  • Benito Chen
  • Oleksandra Hararuk
  • Alan Hastings
  • Forrest Hoffman
  • Belinda E. Medlyn
  • Shuli Niu
  • Martin Rasmussen
  • Katherine E. O. Todd-Brown
  • Ying-Ping Wang

Summary, in English

Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux-and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2017-01-12

Language

English

Pages

145-161

Publication/Series

Biogeosciences

Volume

14

Issue

1

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Climate Research

Status

Published

ISBN/ISSN/Other

  • ISSN: 1726-4170