The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Alex Vermeulen

Alex Vermeulen

Manager

Portrait of Alex Vermeulen

Inverse carbon dioxide flux estimates for the Netherlands

Author

  • A. G. C. A. Meesters
  • L. F. Tolk
  • W. Peters
  • R. W. A. Hutjes
  • O. S. Vellinga
  • J. A. Elbers
  • Alex Vermeulen
  • S. van der Laan
  • R. E. M. Neubert
  • H. A. J. Meijer
  • A. J. Dolman

Summary, in English

CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2 uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

Publishing year

2012

Language

English

Pages

1-13

Publication/Series

Journal of Geophysical Research: Atmospheres

Volume

117

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 2169-8996
  • Article number D20306