The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Thomas Holst

Researcher

Default user image.

Warming-induced increase in aerosol number concentration likely to moderate climate change

Author

  • Pauli Paasonen
  • Ari Asmi
  • Tuukka Petaja
  • Maija K. Kajos
  • Mikko Aijala
  • Heikki Junninen
  • Thomas Holst
  • Jonathan P. D. Abbatt
  • Almut Arneth
  • Wolfram Birmili
  • Hugo Denier van der Gon
  • Amar Hamed
  • Andras Hoffer
  • Lauri Laakso
  • Ari Laaksonen
  • W. Richard Leaitch
  • Christian Plass-Duelmer
  • Sara C. Pryor
  • Petri Raisanen
  • Erik Swietlicki
  • Alfred Wiedensohler
  • Douglas R. Worsnop
  • Veli-Matti Kerminen
  • Markku Kulmala

Summary, in English

Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei(1-4). Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate the warming caused by greenhouse gases(1). In the future, tightening of controls on anthropogenic aerosol and precursor vapour emissions to achieve higher air quality may weaken this beneficial effect(5-)7. Natural aerosols, too, might affect future warming(2,3,8,9). Here we analyse long-term observations of concentrations and compositions of aerosol particles and their biogenic precursor vapours in continental mid-and high-latitude environments. We use measurements of particle number size distribution together with boundary layer heights derived from reanalysis data to show that the boundary layer burden of cloud condensation nuclei increases exponentially with temperature. Our results confirm a negative feedback mechanism between the continental biosphere, aerosols and climate: aerosol cooling effects are strengthened by rising biogenic organic vapour emissions in response to warming, which in turn enhance condensation on particles and their growth to the size of cloud condensation nuclei. This natural growth mechanism produces roughly 50% of particles at the size of cloud condensation nuclei across Europe. We conclude that biosphere-atmosphere interactions are crucial for aerosol climate effects and can significantly influence the effects of anthropogenic aerosol emission controls, both on climate and air quality.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • Nuclear physics
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2013

Language

English

Pages

438-442

Publication/Series

Nature Geoscience

Volume

6

Issue

6

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Subatomic Physics
  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1752-0908