NGEA 01 2017
PERIGLACIAL ENVIRONMENTS
GLOBAL & NORDIC MOUNTAINS, SVALBARD, SIBIREA, GREENLAND, ICELAND & ARCTIC NORTH AMERIKA

Åkerman 2017
PERIGLACIAL ENVIRONMENTS

Areas with an important influence of cold air and ground temperatures, in daily, seasonal or annual pattern. Creating frozen ground – temporarily- seasonal frost or permafrost
ALASKA-CANADA
The HIMALAJAS, the ALPS, the ANDES etc.
GREENLAND

Åkerman 2017
TIBETAN PLATEAU

Åkerman 2017
Climate change and Increased environmental pressure
- Minerals
- Fishing
- Tourism
- Defence inst.
- Infrastructure

Åkerman 2017
RAPID PHYSICAL WEATHERING
RAPID CHEMICAL WEATHERING
MELTING OF PERMAFROST

Åkerman 2017
RAPID SLOPE PROCESSES
STRONG WIND ACTION
SEA AND LAKE ICE

Åkerman 2017
SENSIBILTY to CLIMATIC VARIABILITY OR CHANGES

Active layer at site AB1. STORFLAKET, 380 m.a.s.l

Depth in cm

Åkerman 2017
What might be like this at temperatures $< 0^\circ \text{C}$
Even very minor changes might have drastic effects.

Might be like this at temp. $> 0^\circ C$
One of the most characteristic features of the periglacial environment is the presence of permafrost and various types of soil ice.

Åkerman 2017
Thermokarst

Åkerman 2017
GCM Projections - Arctic Surface Air Temperature

60N - Pole: Change from 1990-1999 mean

- Canadian Climate Centre (CCC)
- NCAR Climate System Model (CSM)
- Geophysical Fluid Dynamics Laboratory (GFDL)
- Hadley Centre Climate Model 3 (UKMO)
- European Centre, Hamburg (ECHAM)

temperature change from 1990-1999 mean (deg. C)

http://zubov.atmos.uiuc.edu/ACIA/
Flow chart of permafrost model.

List of computed variables:

\(H_{sn} \) - Snow depth;
\(T_s \) – Surface temperature;
\(SFI \) – Surface Frost Index;
\(Z_{th} \) – Depth of seasonal thaw;
\(dZ^r_{th} \) – Relative change of thaw depth from baseline period,
\[
dZ^r_{th} = \frac{Z_{th}(t_1) - Z_{th}(t_0)}{Z_{th}(t_0)}
\]
LET US CHECK SOME OF THE PROCESSES