The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Paul Miller

Senior lecturer

Default user image.

Modelling Tundra Vegetation Response to Recent Arctic Warming

Author

  • Paul Miller
  • Benjamin Smith

Summary, in English

The Arctic land area has warmed by > 1 A degrees C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980-2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2012

Language

English

Pages

281-291

Publication/Series

Ambio: a Journal of Human Environment

Volume

41

Document type

Journal article

Publisher

Springer

Topic

  • Physical Geography

Keywords

  • Arctic tundra vegetation
  • Climate change
  • Shrub expansion
  • Ecosystem
  • modelling
  • LPJ-GUESS
  • Biogeophysical feedbacks

Status

Published

ISBN/ISSN/Other

  • ISSN: 0044-7447