The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Marko Scholze

Senior lecturer

Default user image.

Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle

Author

  • M. Scholze
  • T. Kaminski
  • W. Knorr
  • S. Blessing
  • M. Vossbeck
  • J. P. Grant
  • K. Scipal

Summary, in English

Carbon dioxide (CO 2) is the most important anthropogenic greenhouse gas contributing to about half of the total anthropogenic change in the Earth's radiation budget. And about half of the anthropogenic CO2 emissions stay in the atmosphere, the remainder is taken up by the biosphere. It is of paramount importance to better understand CO2 sources and sinks and their spatio-temporal distribution. In the context of climate change this information is needed to improve the projections of future trends in carbon sinks and sources. Since the terrestrial carbon and water cycles are tightly coupled by biological plant processes, i.e. through the stomatal gas exchange with the atmosphere, it is expected that information on the soil moisture state will help to constrain terrestrial carbon fluxes. In the present feasibility study we employ the Carbon Cycle Data Assimilation System CCDAS to pioneer the assimilation of the SMOS L3 soil moisture product together with another biophysical data set - in this case atmospheric CO2 flask samples. The two data streams are assimilated into a process-based model of the terrestrial carbon cycle over two years. CCDAS aims to optimise model process parameters and subsequently land surface CO2 exchange fluxes. We find that the assimilation of SMOS data improves the agreement with independent soil moisture data from the active ASCAT instrument. In both cases the assimilation also improves the fit of modelled atmospheric CO2 to the observations at flask sampling sites which have not been used in the assimilation. Reduction of uncertainty relative to the prior is generally high for both regional net ecosystem productivity and net primary productivity and considerably higher than for assimilating CO2 only, which quantifies the added value of SMOS observations as a constraint on the terrestrial carbon cycle. The study demonstrates a high potential for a SMOS L4 carbon flux product.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2015-06-26

Language

English

Pages

334-345

Publication/Series

Remote Sensing of Environment

Volume

180

Document type

Journal article

Publisher

Elsevier

Topic

  • Climate Research

Keywords

  • SMOS soil moisture
  • Terrestrial carbon cycle
  • Uncertainty estimation
  • Variational data assimilation

Status

Published

ISBN/ISSN/Other

  • ISSN: 0034-4257