The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Margareta Johansson

Researcher

Default user image.

Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange-a regional assessment

Author

  • Julia Bosiö
  • Margareta Johansson
  • Terry V. Callaghan
  • Bernt Johansen
  • Torben Christensen

Summary, in English

One of the major concerns regarding climate change in high latitudes is the potential feedback from greenhouse gases (GHG) being released from thawing peat soils. In this paper we show how vegetational patterns and associated GHG fluxes in subarctic palsa (peat mounds with a permanently frozen core) mires can be linked to climate, based on field observations from fifteen palsa sites distributed in northern Fennoscandia. Fine resolution (100 m) land cover data are combined with projections of future climate for the 21st century in order to model the potential future distribution of palsa vegetation in northern Fennoscandia. Site scale climate-vegetational relationships for two vegetation types are described by a climate suitability index computed from the field observations. Our results indicate drastic changes in the palsa vegetational patterns over the coming decades with a 97 % reduction in dry hummock areas by 2041-2060 compared to the 1961-1990 areal coverage. The impact of these changes on the carbon balance is a decrease in the efflux of CO2 from 130 kilotonnes C y(-1) to a net uptake of 11 kilotonnes C y(-1) and a threefold increase in the efflux of CH4 from 6 to 18 kilotonnes C y(-1) over the same period and over the 5,520 km(2) area of palsa mires. The combined effect is equivalent to a slight decrease in CO2-C emissions, from 182 to 152 kilotonnes C y(-1). Main uncertainties involve the ability of the vegetation community to adapt to new conditions, and long-term changes in hydrology due to absence of ice and frost heaving.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2012

Language

English

Pages

379-398

Publication/Series

Climatic Change

Volume

115

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 0165-0009