The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Lars Eklundh

Professor

Default user image.

Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI

Author

  • Per Ola Olsson
  • Johan Lindström
  • Lars Eklundh

Summary, in English

Forestry and nature conservation can benefit from rapid on-line information on forest disturbances, such as insect attacks. This type of information would facilitate timely field studies and enable more rapid counter measures, as well as enable studies of the dynamics of an insect outbreak. In this study we developed a method based on MODIS derived NDVI for near real-time monitoring of insect induced forest defoliation in a subalpine birch forest in northern Sweden. The method is based on deviations from a seasonal trajectory of NDVI representing forest conditions without disturbances. A Kalman filter is applied to handle noise and satellite-derived NDVI observations of low quality, and cumulative sums (CUSUM) of the deviations from the seasonal trajectory representing undisturbed forests are used to detect disturbances. An annual offset of the seasonal trajectory is introduced in CUSUM to handle inter-annual variability in the start of season. Evaluation of the method showed that 74% of the defoliation was detected with a misclassification of undisturbed areas of 39% in MODIS pixels with at least 50% birch forest cover. The ability of the method to detect defoliation can be adjusted to fit the purpose of a study; with a higher threshold applied, 100% of the defoliation in the evaluation data was detected with 56% of the undisturbed areas misclassified as defoliated. The method also facilitates studies of the intra-seasonal temporal dynamics of an insect outbreak, which is a major advantage compared to methods that classifies pixels into undisturbed or defoliated for an entire season. Furthermore, the method can be extended to monitor within-season refoliation after an insect outbreak.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • Mathematical Statistics
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2016-08

Language

English

Pages

42-53

Publication/Series

Remote Sensing of Environment

Volume

181

Document type

Journal article

Publisher

Elsevier

Topic

  • Physical Geography

Keywords

  • Insect defoliation monitoring
  • Kalman filter
  • MODIS
  • NDVI
  • Near real-time

Status

Published

ISBN/ISSN/Other

  • ISSN: 0034-4257