The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Jonas Ardö

Jonas Ardö

Professor

Jonas Ardö

Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach

Author

  • M. Marshall
  • K. Tu
  • C. Funk
  • J. Michaelsen
  • P. Williams
  • C. Williams
  • Jonas Ardö
  • M. Boucher
  • B. Cappelaere
  • A. de Grandcourt
  • A. Nickless
  • Y. Nouvellon
  • R. Scholes
  • W. Kutsch

Summary, in English

Climate change is expected to have the greatest impact on the world's economically poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled evapotranspiration (ET), a key input in continental-scale hydrologic models. In this study, a remote sensing model of transpiration (the primary component of ET), driven by a time series of vegetation indices, was used to substitute transpiration from the Global Land Data Assimilation System realization of the National Centers for Environmental Prediction, Oregon State University, Air Force, and Hydrology Research Laboratory at National Weather Service Land Surface Model (GNOAH) to improve total ET model estimates for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against GNOAH ET and the remote sensing method using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance were at humid sites with dense vegetation, while performance at semi-arid sites was poor, but better than the models before hybridization. The reduction in errors using the hybrid model can be attributed to the integration of a simple canopy scheme that depends primarily on low bias surface climate reanalysis data and is driven primarily by a time series of vegetation indices.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • eSSENCE: The e-Science Collaboration
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2013

Language

English

Pages

1079-1091

Publication/Series

Hydrology and Earth System Sciences

Volume

17

Issue

3

Document type

Journal article

Publisher

European Geophysical Society

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1607-7938