The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Anders Lindroth

Professor

Default user image.

Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere

Author

  • J Sagerfors
  • Anders Lindroth
  • A Grelle
  • L Klemedtsson
  • P Weslien
  • M Nilsson

Summary, in English

[1] Mires are key landscape elements at high latitudes and have certainly accumulated carbon during the Holocene, but their current carbon balance at the present time is very unclear. The major carbon flux is the land-atmosphere CO2 exchange and full-year data are still limited. Here we present data from 3 a (2001-2003) of continuous Eddy Covariance measurements at Degero Stormyr (64 degrees 11'N, 19 degrees 33'E) an oligotrophic, minerotrophic mire in Sweden. The climate at the site is defined as cold temperate humid, with 30-a annual precipitation and temperature means of 523 mm and +1.2 degrees C, respectively, while the mean temperatures in July and January are +14.7 degrees C and -12.4 degrees C, respectively. The length of the vegetation period was 153 +/- 15 d during the measured years. The minerotrophic mire represented a net sink for the vertical exchange of atmospheric CO2-C during the 3 a, with an average net uptake of 55 +/- 7 g ( mean +/- SD) CO2-C m(-2) a(-1). The growing season average uptake was 92 +/- 10 g CO2-C m(-2), of which approximately 40% ( 37 +/- 5 g CO2-C m(-2)) was lost during the nongrowing season. The daily average uptake over the growing season was 0.65 +/- 0.57, 0.73 +/- 0.61, and 0.68 +/- 0.62 g CO2-C m(-2) d(-1) in 2001, 2002, and 2003, respectively. The daily average net uptake for the month with highest uptake was 1.10 +/- 0.33, 1.11 +/- 0.63, and 1.22 +/- 0.55 g CO2-C m(-2) d(-1) in July 2001, July 2002, and June 2003, respectively. The daily average efflux during the nongrowing season was 0.14 +/- 0.28, 0.15 +/- 0.20, and 0.20 +/- 0.19 g CO2-C m(-2) d(-1) in the years 2001, 2002, and 2003, respectively.

Department/s

  • Dept of Physical Geography and Ecosystem Science

Publishing year

2008

Language

English

Publication/Series

Journal of Geophysical Research - Biogeosciences

Volume

113

Issue

G1

Document type

Journal article

Publisher

Wiley

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 2169-8961