The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Ahlström

Anders Ahlström

Senior lecturer

Anders Ahlström

The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink

Author

  • Anders Ahlström
  • Michael R. Raupach
  • Guy Schurgers
  • Benjamin Smith
  • Almut Arneth
  • Martin Jung
  • Markus Reichstein
  • Josep G. Canadell
  • Pierre Friedlingstein
  • Atul K. Jain
  • Etsushi Kato
  • Benjamin Poulter
  • Stephen Sitch
  • Benjamin D. Stocker
  • Nicolas Viovy
  • Ying Ping Wang
  • Andy Wiltshire
  • Sönke Zaehle
  • Ning Zeng

Summary, in English

The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.

Department/s

  • Dept of Physical Geography and Ecosystem Science
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2015

Language

English

Pages

895-899

Publication/Series

Science

Volume

348

Issue

6237

Document type

Journal article

Publisher

American Association for the Advancement of Science (AAAS)

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1095-9203